- Overview
- Getting Started Guide
- UserGuide
-
References
-
ABEJA Platform CLI
- CONFIG COMMAND
- DATALAKE COMMAND
- DATASET COMMAND
- TRAINING COMMAND
-
MODEL COMMAND
- check-endpoint-image
- check-endpoint-json
- create-deployment
- create-endpoint
- create-model
- create-service
- create-trigger
- create-version
- delete-deployment
- delete-endpoint
- delete-model
- delete-service
- delete-version
- describe-deployments
- describe-endpoints
- describe-models
- describe-service-logs
- describe-services
- describe-versions
- download-versions
- run-local
- run-local-server
- start-service
- stop-service
- submit-run
- update-endpoint
- startapp command
-
ABEJA Platform CLI
- FAQ
- Appendix
create-version
Description
Create a version using the current directory as the source code.
Synopsis
$ abeja training create-version [--help]
Usage: abeja training create-version [OPTIONS]
Options:
-j, --job_definition_name, --job-definition-name TEXT
Training job definition name
-h, --handler TEXT Training handler
-i, --image TEXT Specify base image name and tag in the
"name:tag" format. ex) abeja-inc/all-gpu:19.10
-d, --description TEXT Description for the training job, which must be less
than or equal to 256 characters.
-e, --environment ENVIRONMENTSTRING
Environment variables, ex. BATCH_SIZE:32
--exclude TEXT Specify the file/dir to exclude from create-version.
--dataset, --datasets DATASETPARAMSTRING
Datasets name
--help Show this message and exit.
Argument
Get the parameters from the training configuration file (training.yaml). Upload the current directory as source code.
Options
-j
, --job_definition_name
, --job-definition-name
Training job definition name
With training.yaml
, values defined as name
in training.yaml
is set by default.
This option can overwrite name
in training.yaml
.
-h
, --handler
Path for call function
With training.yaml
, values defined as handler
in training.yaml
is set by default.
This option can overwrite handler
in training.yaml
.
-i
, --image
Image for training model
With training.yaml
, values defined as image
in training.yaml
is set by default.
This option can overwrite image
in training.yaml
.
-d
, --description
Explanation of training definition version
-e
, --environment
Specify an environment variable. Registered environment variables can be referenced from the code. e.g.)IMAGE_WIDTH:100
For more information on user-specifiable environment variables, see here.
( version 0.14.0
or later ) With training.yaml
, values defined as environment
( params
) in training.yaml
are set by default.
This option can overwrite environment
( params
) in training.yaml
.
--exclude
Specify files / directories to be excluded from the version to be created.
If you set ignores
in the learning configuration file (training.yaml) , both are valid.
If you want to specify more than one, repeat --exclude <value1> --exclude <value2> ...
.
--dataset
, --datasets
Using for training model
With training.yaml
, values defined as datasets
in training.yaml
is set by default.
This option can overwrite datasets
in training.yaml
.
-e
option is used as an abbreviation for--environment
option in version0.14.0
or later
Example
To make a training version
Create a training version in this example
Default training configuration file (training.yaml):
name: training1
handler: train:handler
image: abeja-inc/all-gpu:19.04
datasets:
"mnist": "1111111111111"
Command:
$ abeja training create-version
Output:
{
"created_at": "2018-02-13T10:13:10.956198Z",
"datasets": {
"mnist": "1111111111111"
},
"handler": "train:handler",
"image": "abeja-inc/all-gpu:19.04",
"job_definition_id": "1368416720943",
"job_definition_version": 1,
"modified_at": "2018-02-13T10:13:11.000461Z",
"user_parameters": {}
}