- Overview
- Getting Started Guide
- UserGuide
-
References
-
ABEJA Platform CLI
- CONFIG COMMAND
- DATALAKE COMMAND
- DATASET COMMAND
- TRAINING COMMAND
-
MODEL COMMAND
- check-endpoint-image
- check-endpoint-json
- create-deployment
- create-endpoint
- create-model
- create-service
- create-trigger
- create-version
- delete-deployment
- delete-endpoint
- delete-model
- delete-service
- delete-version
- describe-deployments
- describe-endpoints
- describe-models
- describe-service-logs
- describe-services
- describe-versions
- download-versions
- run-local
- run-local-server
- start-service
- stop-service
- submit-run
- update-endpoint
- startapp command
-
ABEJA Platform CLI
- FAQ
- Appendix
debug-local
Description
The environment specified by --image
is built locally, and the learning code that exists locally is executed on that environment.
Notes
In order to use the debug-local
command, docker must be installed.
Synopsis
$ abeja training debug-local [--help]
Usage: abeja training debug-local [OPTIONS]
Local train commands
Options:
-h, --handler TEXT Training handler [required]
-i, --image TEXT Specify base image name and tag in the
"name:tag" format [required]
-o, --organization_id, --organization-id TEXT
Organization ID, organization_id of current
credential organization is used by default
[required]
--datasets DATASETPARAMSTRING Datasets name
-e, --environment ENVIRONMENTSTRING
Environment variables
-v, --volume VOLUMEPARAMSTRING Volume driver options, ex) /path/source/on/h
ost:/path/destination/on/container
--no-cache, --no_cache Not use built cache
--v1 Specify if you use old custom runtime image
--runtime TEXT Runtime, equivalent to docker run
`--runtime` option
--build-only Build a docker image only. Not run train
command.
-q, --quiet Suppress info logs
--config PATH Read Configuration from PATH. By default
read from `training.yaml`
--help Show this message and exit.
Options
-h
, --handler
Specify the path of the function to be called.
If --handler main: handler
is specified,handler
defined in the main.py
file is called.
If the file to call is placed directly under the src directory, it will be src.main: handler
.
-i
, --image
Specify the image to use. See here for images that can be specified.
-o
, --organization_id
, --organization-id
Specify the organization ID.
The organization ID is registered in the environment variable with the key ABEJA_ORGANIZATION_ID
.
It can be referenced from the learning code to be executed.
--datasets
Specify the data set to be used in the following format. {dataset_name}:{dataset_id}
The registered dataset can be referenced from the context given as an argument of the training code.
( version 0.14.0
or later ) With training.yaml
, values defined as datasets
in training.yaml
are set by default.
This option can overwrite datasets
in training.yaml
.
-e
, --environment
Specify an environment variable. Registered environment variables can be referenced from the code. e.g.)IMAGE_WIDTH:100
For more information on user-specifiable environment variables, see here.
( version 0.14.0
or later ) With training.yaml
, values defined as environment
( params
) in training.yaml
are set by default.
This option can overwrite environment
( params
) in training.yaml
.
-v
, --volume
This corresponds to the --volume
option of the docker run command.
In the format --volume/path/source/on/host:/path/destination/on/container
, specify the host-side path to be mounted and the container-side path to be mounted. It is possible to specify more than one.
The --read-only
option of the docker run command is not supported.
--runtime
This corresponds to the --runtime
option of the docker run command.
The debug-local
command runs the learning job as a container.
The --runtime
option specifies the runtime for starting the container.
For example, if nvidia-docker2 is installed, you can run learning using GPU by specifying --runtime nvidia
.
--build-only
Only build the image, no learning itself.
The built image will be named [specified image name]/[specified image tag]/train-local-model
.
--v1
This option should be given when using 18.10
custom images.
--no_cache
, --no-cache
Rebuild and recreate the image.
-q
, --quiet
Suppress info log output.
-d
option has been disabled since version 1.1.0.
Example
Debug learning locally
Premise:
- Assume the following status.
$ cat main.py
def handler(context):
dataset_alias = context.datasets
dataset_id = dataset_alias['dataset_name']
...
Command:
$ abeja training debug-local \
-h main:handler \
-i abeja/all-cpu:18.10 \
--organization_id 1234567890123 \
--datasets dataset_1:1000000000
Output:
[info] preparing image : abeja/all-cpu:18.10
[info] building image
INFO: start installing packages from requirements.txt
INFO: packages are installed from requirements.txt
...
Handler environment variables
The handler function executed by debug-local
command can use the following environment variables.
Environment variable name | Description |
---|---|
ABEJA_ORGANIZATION_ID | ID of the organization By default, organization ID of the one in ~/.abeja/config is set ( version 0.12.4 or later ).This value can be overwritten by setting --organization_id option. |
HANDLER | Handler path |
DATASETS | Dataset information |
ABEJA_PLATFORM_USER_ID | User ID By default, value in ~/.abeja/config as abeja-platform-user is set ( version 0.12.4 or later ).This value can be overwritten by setting ABEJA_PLATFORM_USER_ID with --environment option. |
ABEJA_PLATFORM_PERSONAL_ACCESS_TOKEN | Personal Access Token By default, value in ~/.abeja/config as personal-access-token is set ( version 0.12.4 or later ).This value can be overwritten by setting ABEJA_PLATFORM_PERSONAL_ACCESS_TOKEN with --environment option. |